MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. 5457 Aluminum

N12160 nickel belongs to the nickel alloys classification, while 5457 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N12160 nickel and the bottom bar is 5457 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 45
6.0 to 22
Fatigue Strength, MPa 230
55 to 98
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 500
85 to 130
Tensile Strength: Ultimate (UTS), MPa 710
130 to 210
Tensile Strength: Yield (Proof), MPa 270
50 to 190

Thermal Properties

Latent Heat of Fusion, J/g 360
400
Maximum Temperature: Mechanical, °C 1060
180
Melting Completion (Liquidus), °C 1330
660
Melting Onset (Solidus), °C 1280
630
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 11
180
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 90
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 8.5
8.4
Embodied Energy, MJ/kg 120
160
Embodied Water, L/kg 400
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 180
18 to 250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 24
13 to 21
Strength to Weight: Bending, points 22
21 to 28
Thermal Diffusivity, mm2/s 2.8
72
Thermal Shock Resistance, points 19
5.7 to 9.0

Alloy Composition

Aluminum (Al), % 0
97.8 to 99.05
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0
Cobalt (Co), % 27 to 33
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 0 to 3.5
0 to 0.1
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.5
0.15 to 0.45
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.4 to 3.0
0 to 0.080
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.8
0
Tungsten (W), % 0 to 1.0
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1