MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. 7108A Aluminum

N12160 nickel belongs to the nickel alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N12160 nickel and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 45
11 to 13
Fatigue Strength, MPa 230
120 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 500
210
Tensile Strength: Ultimate (UTS), MPa 710
350
Tensile Strength: Yield (Proof), MPa 270
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 360
380
Maximum Temperature: Mechanical, °C 1060
210
Melting Completion (Liquidus), °C 1330
630
Melting Onset (Solidus), °C 1280
520
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 90
10
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 8.5
8.3
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 400
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 180
610 to 640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 24
33 to 34
Strength to Weight: Bending, points 22
38
Thermal Diffusivity, mm2/s 2.8
59
Thermal Shock Resistance, points 19
15 to 16

Alloy Composition

Aluminum (Al), % 0
91.6 to 94.4
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0 to 0.040
Cobalt (Co), % 27 to 33
0
Copper (Cu), % 0
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 3.5
0 to 0.3
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0 to 1.5
0 to 0.050
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.4 to 3.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.8
0 to 0.030
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15