MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. 713.0 Aluminum

N12160 nickel belongs to the nickel alloys classification, while 713.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N12160 nickel and the bottom bar is 713.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
3.9 to 4.3
Fatigue Strength, MPa 230
63 to 120
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 80
27
Shear Strength, MPa 500
180
Tensile Strength: Ultimate (UTS), MPa 710
240 to 260
Tensile Strength: Yield (Proof), MPa 270
170

Thermal Properties

Latent Heat of Fusion, J/g 360
370
Maximum Temperature: Mechanical, °C 1060
180
Melting Completion (Liquidus), °C 1330
630
Melting Onset (Solidus), °C 1280
610
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 13
24

Otherwise Unclassified Properties

Base Metal Price, % relative 90
9.5
Density, g/cm3 8.2
3.1
Embodied Carbon, kg CO2/kg material 8.5
7.8
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 400
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
8.7 to 9.9
Resilience: Unit (Modulus of Resilience), kJ/m3 180
210 to 220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 24
22 to 23
Strength to Weight: Bending, points 22
28 to 29
Thermal Diffusivity, mm2/s 2.8
57
Thermal Shock Resistance, points 19
10 to 11

Alloy Composition

Aluminum (Al), % 0
87.6 to 92.4
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0 to 0.35
Cobalt (Co), % 27 to 33
0
Copper (Cu), % 0
0.4 to 1.0
Iron (Fe), % 0 to 3.5
0 to 1.1
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 1.5
0 to 0.6
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0 to 0.15
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.4 to 3.0
0 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.8
0 to 0.25
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
7.0 to 8.0
Residuals, % 0
0 to 0.25