MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. ACI-ASTM CB6 Steel

N12160 nickel belongs to the nickel alloys classification, while ACI-ASTM CB6 steel belongs to the iron alloys. They have a modest 24% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N12160 nickel and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 45
18
Fatigue Strength, MPa 230
410
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 80
77
Tensile Strength: Ultimate (UTS), MPa 710
880
Tensile Strength: Yield (Proof), MPa 270
660

Thermal Properties

Latent Heat of Fusion, J/g 360
280
Maximum Temperature: Mechanical, °C 1060
870
Melting Completion (Liquidus), °C 1330
1440
Melting Onset (Solidus), °C 1280
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 11
17
Thermal Expansion, µm/m-K 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 90
12
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
2.5
Embodied Energy, MJ/kg 120
36
Embodied Water, L/kg 400
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
150
Resilience: Unit (Modulus of Resilience), kJ/m3 180
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
32
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 2.8
4.6
Thermal Shock Resistance, points 19
31

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.060
Chromium (Cr), % 26 to 30
15.5 to 17.5
Cobalt (Co), % 27 to 33
0
Iron (Fe), % 0 to 3.5
74.4 to 81
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 1.0
0 to 0.5
Nickel (Ni), % 25 to 44.4
3.5 to 5.5
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 2.4 to 3.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0
Tungsten (W), % 0 to 1.0
0