MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. ACI-ASTM CG12 Steel

N12160 nickel belongs to the nickel alloys classification, while ACI-ASTM CG12 steel belongs to the iron alloys. They have a modest 37% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N12160 nickel and the bottom bar is ACI-ASTM CG12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 45
40
Fatigue Strength, MPa 230
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 80
78
Tensile Strength: Ultimate (UTS), MPa 710
550
Tensile Strength: Yield (Proof), MPa 270
220

Thermal Properties

Latent Heat of Fusion, J/g 360
300
Maximum Temperature: Mechanical, °C 1060
1040
Melting Completion (Liquidus), °C 1330
1410
Melting Onset (Solidus), °C 1280
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 11
15
Thermal Expansion, µm/m-K 13
16

Otherwise Unclassified Properties

Base Metal Price, % relative 90
18
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
3.3
Embodied Energy, MJ/kg 120
48
Embodied Water, L/kg 400
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
180
Resilience: Unit (Modulus of Resilience), kJ/m3 180
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 2.8
4.0
Thermal Shock Resistance, points 19
12

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.12
Chromium (Cr), % 26 to 30
20 to 23
Cobalt (Co), % 27 to 33
0
Iron (Fe), % 0 to 3.5
60.3 to 70
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
10 to 13
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 2.4 to 3.0
0 to 2.0
Sulfur (S), % 0 to 0.015
0 to 0.040
Titanium (Ti), % 0.2 to 0.8
0
Tungsten (W), % 0 to 1.0
0