MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. AISI 321 Stainless Steel

N12160 nickel belongs to the nickel alloys classification, while AISI 321 stainless steel belongs to the iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N12160 nickel and the bottom bar is AISI 321 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 45
34 to 50
Fatigue Strength, MPa 230
220 to 270
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 500
420 to 460
Tensile Strength: Ultimate (UTS), MPa 710
590 to 690
Tensile Strength: Yield (Proof), MPa 270
220 to 350

Thermal Properties

Latent Heat of Fusion, J/g 360
290
Maximum Temperature: Mechanical, °C 1060
870
Melting Completion (Liquidus), °C 1330
1430
Melting Onset (Solidus), °C 1280
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 11
16
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 90
16
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
3.2
Embodied Energy, MJ/kg 120
45
Embodied Water, L/kg 400
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
190 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 180
130 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
21 to 25
Strength to Weight: Bending, points 22
20 to 22
Thermal Diffusivity, mm2/s 2.8
4.1
Thermal Shock Resistance, points 19
13 to 15

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 26 to 30
17 to 19
Cobalt (Co), % 27 to 33
0
Iron (Fe), % 0 to 3.5
65.3 to 74
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
9.0 to 12
Niobium (Nb), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 2.4 to 3.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0 to 0.7
Tungsten (W), % 0 to 1.0
0