MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. ASTM A225 Steel

N12160 nickel belongs to the nickel alloys classification, while ASTM A225 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N12160 nickel and the bottom bar is ASTM A225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
21 to 23
Fatigue Strength, MPa 230
330 to 390
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 500
390 to 520
Tensile Strength: Ultimate (UTS), MPa 710
620 to 830
Tensile Strength: Yield (Proof), MPa 270
460 to 550

Thermal Properties

Latent Heat of Fusion, J/g 360
250
Maximum Temperature: Mechanical, °C 1060
400
Melting Completion (Liquidus), °C 1330
1460
Melting Onset (Solidus), °C 1280
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 11
52
Thermal Expansion, µm/m-K 13
13

Otherwise Unclassified Properties

Base Metal Price, % relative 90
2.3
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.8
Embodied Energy, MJ/kg 120
24 to 25
Embodied Water, L/kg 400
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
120 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 180
580 to 820
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
22 to 29
Strength to Weight: Bending, points 22
21 to 25
Thermal Diffusivity, mm2/s 2.8
14
Thermal Shock Resistance, points 19
18 to 24