MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. EN 1.4941 Stainless Steel

N12160 nickel belongs to the nickel alloys classification, while EN 1.4941 stainless steel belongs to the iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is N12160 nickel and the bottom bar is EN 1.4941 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 45
39
Fatigue Strength, MPa 230
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 500
400
Tensile Strength: Ultimate (UTS), MPa 710
590
Tensile Strength: Yield (Proof), MPa 270
210

Thermal Properties

Latent Heat of Fusion, J/g 360
290
Maximum Temperature: Mechanical, °C 1060
940
Melting Completion (Liquidus), °C 1330
1430
Melting Onset (Solidus), °C 1280
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 11
16
Thermal Expansion, µm/m-K 13
16

Otherwise Unclassified Properties

Base Metal Price, % relative 90
16
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
3.3
Embodied Energy, MJ/kg 120
47
Embodied Water, L/kg 400
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
180
Resilience: Unit (Modulus of Resilience), kJ/m3 180
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 2.8
4.3
Thermal Shock Resistance, points 19
13

Alloy Composition

Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0 to 0.15
0.040 to 0.080
Chromium (Cr), % 26 to 30
17 to 19
Cobalt (Co), % 27 to 33
0
Iron (Fe), % 0 to 3.5
65.1 to 73.6
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
9.0 to 12
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 2.4 to 3.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.2 to 0.8
0.4 to 0.8
Tungsten (W), % 0 to 1.0
0