MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. EN AC-21000 Aluminum

N12160 nickel belongs to the nickel alloys classification, while EN AC-21000 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N12160 nickel and the bottom bar is EN AC-21000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
6.7
Fatigue Strength, MPa 230
100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 710
340
Tensile Strength: Yield (Proof), MPa 270
240

Thermal Properties

Latent Heat of Fusion, J/g 360
390
Maximum Temperature: Mechanical, °C 1060
170
Melting Completion (Liquidus), °C 1330
670
Melting Onset (Solidus), °C 1280
550
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 90
11
Density, g/cm3 8.2
3.0
Embodied Carbon, kg CO2/kg material 8.5
8.0
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 400
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
21
Resilience: Unit (Modulus of Resilience), kJ/m3 180
390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 24
32
Strength to Weight: Bending, points 22
36
Thermal Diffusivity, mm2/s 2.8
49
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0
Cobalt (Co), % 27 to 33
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 0 to 3.5
0 to 0.35
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0 to 0.050
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.4 to 3.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.2 to 0.8
0.15 to 0.3
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1