MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. EN AC-45100 Aluminum

N12160 nickel belongs to the nickel alloys classification, while EN AC-45100 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N12160 nickel and the bottom bar is EN AC-45100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 45
1.0 to 2.8
Fatigue Strength, MPa 230
82 to 99
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 710
300 to 360
Tensile Strength: Yield (Proof), MPa 270
210 to 320

Thermal Properties

Latent Heat of Fusion, J/g 360
470
Maximum Temperature: Mechanical, °C 1060
170
Melting Completion (Liquidus), °C 1330
630
Melting Onset (Solidus), °C 1280
550
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 90
10
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 8.5
7.9
Embodied Energy, MJ/kg 120
150
Embodied Water, L/kg 400
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
3.5 to 7.6
Resilience: Unit (Modulus of Resilience), kJ/m3 180
290 to 710
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 24
30 to 35
Strength to Weight: Bending, points 22
35 to 39
Thermal Diffusivity, mm2/s 2.8
54
Thermal Shock Resistance, points 19
14 to 16

Alloy Composition

Aluminum (Al), % 0
88 to 92.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0
Cobalt (Co), % 27 to 33
0
Copper (Cu), % 0
2.6 to 3.6
Iron (Fe), % 0 to 3.5
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.15 to 0.45
Manganese (Mn), % 0 to 1.5
0 to 0.55
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0 to 0.1
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.4 to 3.0
4.5 to 6.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.2 to 0.8
0 to 0.25
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15