MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. EN AC-71100 Aluminum

N12160 nickel belongs to the nickel alloys classification, while EN AC-71100 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is N12160 nickel and the bottom bar is EN AC-71100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 45
1.1
Fatigue Strength, MPa 230
150
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 710
260
Tensile Strength: Yield (Proof), MPa 270
230

Thermal Properties

Latent Heat of Fusion, J/g 360
490
Maximum Temperature: Mechanical, °C 1060
170
Melting Completion (Liquidus), °C 1330
580
Melting Onset (Solidus), °C 1280
520
Specific Heat Capacity, J/kg-K 470
860
Thermal Expansion, µm/m-K 13
22

Otherwise Unclassified Properties

Base Metal Price, % relative 90
9.5
Density, g/cm3 8.2
2.9
Embodied Carbon, kg CO2/kg material 8.5
7.4
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 400
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
2.8
Resilience: Unit (Modulus of Resilience), kJ/m3 180
360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 22
31
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 0
78.7 to 83.3
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0
Cobalt (Co), % 27 to 33
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 3.5
0 to 0.3
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 1.5
0 to 0.15
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.4 to 3.0
7.5 to 9.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.8
0 to 0.15
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
9.0 to 10.5
Residuals, % 0
0 to 0.15