MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. SAE-AISI 1042 Steel

N12160 nickel belongs to the nickel alloys classification, while SAE-AISI 1042 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N12160 nickel and the bottom bar is SAE-AISI 1042 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
14 to 18
Fatigue Strength, MPa 230
230 to 370
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 500
380 to 420
Tensile Strength: Ultimate (UTS), MPa 710
620 to 700
Tensile Strength: Yield (Proof), MPa 270
340 to 580

Thermal Properties

Latent Heat of Fusion, J/g 360
250
Maximum Temperature: Mechanical, °C 1060
400
Melting Completion (Liquidus), °C 1330
1460
Melting Onset (Solidus), °C 1280
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 11
52
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 90
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.4
Embodied Energy, MJ/kg 120
18
Embodied Water, L/kg 400
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
87 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 180
320 to 900
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
22 to 25
Strength to Weight: Bending, points 22
21 to 22
Thermal Diffusivity, mm2/s 2.8
14
Thermal Shock Resistance, points 19
20 to 22

Alloy Composition

Carbon (C), % 0 to 0.15
0.4 to 0.47
Chromium (Cr), % 26 to 30
0
Cobalt (Co), % 27 to 33
0
Iron (Fe), % 0 to 3.5
98.5 to 99
Manganese (Mn), % 0 to 1.5
0.6 to 0.9
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 2.4 to 3.0
0
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0.2 to 0.8
0
Tungsten (W), % 0 to 1.0
0