MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. SAE-AISI 5130 Steel

N12160 nickel belongs to the nickel alloys classification, while SAE-AISI 5130 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is N12160 nickel and the bottom bar is SAE-AISI 5130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
12 to 22
Fatigue Strength, MPa 230
230 to 330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 80
73
Shear Strength, MPa 500
310 to 390
Tensile Strength: Ultimate (UTS), MPa 710
500 to 640
Tensile Strength: Yield (Proof), MPa 270
330 to 530

Thermal Properties

Latent Heat of Fusion, J/g 360
250
Maximum Temperature: Mechanical, °C 1060
420
Melting Completion (Liquidus), °C 1330
1460
Melting Onset (Solidus), °C 1280
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 11
45
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 90
2.2
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 8.5
1.4
Embodied Energy, MJ/kg 120
19
Embodied Water, L/kg 400
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
74 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 180
290 to 750
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
18 to 23
Strength to Weight: Bending, points 22
18 to 21
Thermal Diffusivity, mm2/s 2.8
12
Thermal Shock Resistance, points 19
16 to 20

Alloy Composition

Carbon (C), % 0 to 0.15
0.28 to 0.33
Chromium (Cr), % 26 to 30
0.8 to 1.1
Cobalt (Co), % 27 to 33
0
Iron (Fe), % 0 to 3.5
97.2 to 98.1
Manganese (Mn), % 0 to 1.5
0.7 to 0.9
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 2.4 to 3.0
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.040
Titanium (Ti), % 0.2 to 0.8
0
Tungsten (W), % 0 to 1.0
0