MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. C82400 Copper

N12160 nickel belongs to the nickel alloys classification, while C82400 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is N12160 nickel and the bottom bar is C82400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 45
1.0 to 20
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
45
Tensile Strength: Ultimate (UTS), MPa 710
500 to 1030
Tensile Strength: Yield (Proof), MPa 270
260 to 970

Thermal Properties

Latent Heat of Fusion, J/g 360
230
Maximum Temperature: Mechanical, °C 1060
270
Melting Completion (Liquidus), °C 1330
1000
Melting Onset (Solidus), °C 1280
900
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 8.5
8.9
Embodied Energy, MJ/kg 120
140
Embodied Water, L/kg 400
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
10 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 180
270 to 3870
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
16 to 33
Strength to Weight: Bending, points 22
16 to 26
Thermal Diffusivity, mm2/s 2.8
39
Thermal Shock Resistance, points 19
17 to 36

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.6 to 1.9
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0 to 0.1
Cobalt (Co), % 27 to 33
0.2 to 0.65
Copper (Cu), % 0
96 to 98.2
Iron (Fe), % 0 to 3.5
0 to 0.2
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0 to 0.2
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.4 to 3.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0.2 to 0.8
0 to 0.12
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5