MakeItFrom.com
Menu (ESC)

N12160 Nickel vs. C89320 Bronze

N12160 nickel belongs to the nickel alloys classification, while C89320 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is N12160 nickel and the bottom bar is C89320 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 710
270
Tensile Strength: Yield (Proof), MPa 270
140

Thermal Properties

Latent Heat of Fusion, J/g 360
190
Maximum Temperature: Mechanical, °C 1060
180
Melting Completion (Liquidus), °C 1330
1050
Melting Onset (Solidus), °C 1280
930
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 11
56
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Base Metal Price, % relative 90
37
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 8.5
3.5
Embodied Energy, MJ/kg 120
56
Embodied Water, L/kg 400
490

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
38
Resilience: Unit (Modulus of Resilience), kJ/m3 180
93
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 24
8.5
Strength to Weight: Bending, points 22
10
Thermal Diffusivity, mm2/s 2.8
17
Thermal Shock Resistance, points 19
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.35
Bismuth (Bi), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 26 to 30
0
Cobalt (Co), % 27 to 33
0
Copper (Cu), % 0
87 to 91
Iron (Fe), % 0 to 3.5
0 to 0.2
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 25 to 44.4
0 to 1.0
Niobium (Nb), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.3
Silicon (Si), % 2.4 to 3.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
5.0 to 7.0
Titanium (Ti), % 0.2 to 0.8
0
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5