R04295 Alloy vs. AISI 305 Stainless Steel
R04295 alloy belongs to the otherwise unclassified metals classification, while AISI 305 stainless steel belongs to the iron alloys. There are 18 material properties with values for both materials. Properties with values for just one material (16, in this case) are not shown.
For each property being compared, the top bar is R04295 alloy and the bottom bar is AISI 305 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 100 | |
200 |
Elongation at Break, % | 22 | |
34 to 45 |
Poisson's Ratio | 0.38 | |
0.28 |
Shear Modulus, GPa | 37 | |
77 |
Tensile Strength: Ultimate (UTS), MPa | 410 | |
580 to 710 |
Tensile Strength: Yield (Proof), MPa | 300 | |
230 to 350 |
Thermal Properties
Latent Heat of Fusion, J/g | 300 | |
290 |
Specific Heat Capacity, J/kg-K | 260 | |
480 |
Thermal Expansion, µm/m-K | 7.2 | |
17 |
Otherwise Unclassified Properties
Density, g/cm3 | 9.0 | |
7.8 |
Embodied Water, L/kg | 950 | |
150 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 84 | |
200 to 210 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 430 | |
130 to 320 |
Stiffness to Weight: Axial, points | 6.3 | |
14 |
Stiffness to Weight: Bending, points | 17 | |
25 |
Strength to Weight: Axial, points | 13 | |
20 to 25 |
Strength to Weight: Bending, points | 14 | |
20 to 23 |
Thermal Shock Resistance, points | 40 | |
13 to 15 |
Alloy Composition
Carbon (C), % | 0 to 0.015 | |
0 to 0.12 |
Chromium (Cr), % | 0 | |
17 to 19 |
Hafnium (Hf), % | 9.0 to 11 | |
0 |
Hydrogen (H), % | 0 to 0.0015 | |
0 |
Iron (Fe), % | 0 | |
65.1 to 72.5 |
Manganese (Mn), % | 0 | |
0 to 2.0 |
Nickel (Ni), % | 0 | |
10.5 to 13 |
Niobium (Nb), % | 85.9 to 90.3 | |
0 |
Nitrogen (N), % | 0 to 0.010 | |
0 |
Oxygen (O), % | 0 to 0.025 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.045 |
Silicon (Si), % | 0 | |
0 to 0.75 |
Sulfur (S), % | 0 | |
0 to 0.030 |
Tantalum (Ta), % | 0 to 0.5 | |
0 |
Titanium (Ti), % | 0.7 to 1.3 | |
0 |
Tungsten (W), % | 0 to 0.5 | |
0 |
Zirconium (Zr), % | 0 to 0.7 | |
0 |