R04295 Alloy vs. EN 1.7362 Steel
R04295 alloy belongs to the otherwise unclassified metals classification, while EN 1.7362 steel belongs to the iron alloys. There are 18 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown.
For each property being compared, the top bar is R04295 alloy and the bottom bar is EN 1.7362 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 100 | |
190 |
Elongation at Break, % | 22 | |
21 to 22 |
Poisson's Ratio | 0.38 | |
0.29 |
Shear Modulus, GPa | 37 | |
74 |
Tensile Strength: Ultimate (UTS), MPa | 410 | |
510 to 600 |
Tensile Strength: Yield (Proof), MPa | 300 | |
200 to 360 |
Thermal Properties
Latent Heat of Fusion, J/g | 300 | |
260 |
Specific Heat Capacity, J/kg-K | 260 | |
470 |
Thermal Expansion, µm/m-K | 7.2 | |
13 |
Otherwise Unclassified Properties
Density, g/cm3 | 9.0 | |
7.8 |
Embodied Water, L/kg | 950 | |
69 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 84 | |
90 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 430 | |
100 to 340 |
Stiffness to Weight: Axial, points | 6.3 | |
14 |
Stiffness to Weight: Bending, points | 17 | |
25 |
Strength to Weight: Axial, points | 13 | |
18 to 21 |
Strength to Weight: Bending, points | 14 | |
18 to 20 |
Thermal Shock Resistance, points | 40 | |
14 to 17 |
Alloy Composition
Carbon (C), % | 0 to 0.015 | |
0.1 to 0.15 |
Chromium (Cr), % | 0 | |
4.0 to 6.0 |
Copper (Cu), % | 0 | |
0 to 0.3 |
Hafnium (Hf), % | 9.0 to 11 | |
0 |
Hydrogen (H), % | 0 to 0.0015 | |
0 |
Iron (Fe), % | 0 | |
91.5 to 95.2 |
Manganese (Mn), % | 0 | |
0.3 to 0.6 |
Molybdenum (Mo), % | 0 | |
0.45 to 0.65 |
Nickel (Ni), % | 0 | |
0 to 0.3 |
Niobium (Nb), % | 85.9 to 90.3 | |
0 |
Nitrogen (N), % | 0 to 0.010 | |
0 to 0.012 |
Oxygen (O), % | 0 to 0.025 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.020 |
Silicon (Si), % | 0 | |
0 to 0.5 |
Sulfur (S), % | 0 | |
0 to 0.0050 |
Tantalum (Ta), % | 0 to 0.5 | |
0 |
Titanium (Ti), % | 0.7 to 1.3 | |
0 |
Tungsten (W), % | 0 to 0.5 | |
0 |
Zirconium (Zr), % | 0 to 0.7 | |
0 |