R04295 Alloy vs. S35000 Stainless Steel
R04295 alloy belongs to the otherwise unclassified metals classification, while S35000 stainless steel belongs to the iron alloys. There are 18 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown.
For each property being compared, the top bar is R04295 alloy and the bottom bar is S35000 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 100 | |
200 |
Elongation at Break, % | 22 | |
2.3 to 14 |
Poisson's Ratio | 0.38 | |
0.28 |
Shear Modulus, GPa | 37 | |
78 |
Tensile Strength: Ultimate (UTS), MPa | 410 | |
1300 to 1570 |
Tensile Strength: Yield (Proof), MPa | 300 | |
660 to 1160 |
Thermal Properties
Latent Heat of Fusion, J/g | 300 | |
280 |
Specific Heat Capacity, J/kg-K | 260 | |
470 |
Thermal Expansion, µm/m-K | 7.2 | |
11 |
Otherwise Unclassified Properties
Density, g/cm3 | 9.0 | |
7.8 |
Embodied Water, L/kg | 950 | |
130 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 84 | |
28 to 170 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 430 | |
1070 to 3360 |
Stiffness to Weight: Axial, points | 6.3 | |
14 |
Stiffness to Weight: Bending, points | 17 | |
25 |
Strength to Weight: Axial, points | 13 | |
46 to 56 |
Strength to Weight: Bending, points | 14 | |
34 to 38 |
Thermal Shock Resistance, points | 40 | |
42 to 51 |
Alloy Composition
Carbon (C), % | 0 to 0.015 | |
0.070 to 0.11 |
Chromium (Cr), % | 0 | |
16 to 17 |
Hafnium (Hf), % | 9.0 to 11 | |
0 |
Hydrogen (H), % | 0 to 0.0015 | |
0 |
Iron (Fe), % | 0 | |
72.7 to 76.9 |
Manganese (Mn), % | 0 | |
0.5 to 1.3 |
Molybdenum (Mo), % | 0 | |
2.5 to 3.2 |
Nickel (Ni), % | 0 | |
4.0 to 5.0 |
Niobium (Nb), % | 85.9 to 90.3 | |
0 |
Nitrogen (N), % | 0 to 0.010 | |
0.070 to 0.13 |
Oxygen (O), % | 0 to 0.025 | |
0 |
Phosphorus (P), % | 0 | |
0 to 0.040 |
Silicon (Si), % | 0 | |
0 to 0.5 |
Sulfur (S), % | 0 | |
0 to 0.030 |
Tantalum (Ta), % | 0 to 0.5 | |
0 |
Titanium (Ti), % | 0.7 to 1.3 | |
0 |
Tungsten (W), % | 0 to 0.5 | |
0 |
Zirconium (Zr), % | 0 to 0.7 | |
0 |