MakeItFrom.com
Menu (ESC)

R30001 Cobalt vs. 2014A Aluminum

R30001 cobalt belongs to the cobalt alloys classification, while 2014A aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30001 cobalt and the bottom bar is 2014A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
72
Elongation at Break, % 1.0
6.2 to 16
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 86
27
Tensile Strength: Ultimate (UTS), MPa 620
210 to 490

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Melting Completion (Liquidus), °C 1530
640
Melting Onset (Solidus), °C 1260
510
Specific Heat Capacity, J/kg-K 430
870
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
110

Otherwise Unclassified Properties

Density, g/cm3 9.0
3.0
Embodied Carbon, kg CO2/kg material 8.9
8.1
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 460
1140

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 22
46
Strength to Weight: Axial, points 19
19 to 45
Strength to Weight: Bending, points 18
26 to 46
Thermal Diffusivity, mm2/s 3.7
55
Thermal Shock Resistance, points 19
9.0 to 22

Alloy Composition

Aluminum (Al), % 0
90.8 to 95
Carbon (C), % 2.0 to 3.0
0
Chromium (Cr), % 28 to 32
0 to 0.1
Cobalt (Co), % 43 to 59
0
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 0 to 3.0
0 to 0.5
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0
0.4 to 1.2
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 0 to 3.0
0 to 0.1
Silicon (Si), % 0 to 2.0
0.5 to 0.9
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 11 to 13
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15