MakeItFrom.com
Menu (ESC)

R30003 Cobalt vs. 2036 Aluminum

R30003 cobalt belongs to the cobalt alloys classification, while 2036 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30003 cobalt and the bottom bar is 2036 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 10 to 73
24
Fatigue Strength, MPa 320 to 560
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 83
26
Tensile Strength: Ultimate (UTS), MPa 970 to 1720
340
Tensile Strength: Yield (Proof), MPa 510 to 1090
200

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1440
560
Specific Heat Capacity, J/kg-K 450
890
Thermal Conductivity, W/m-K 13
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
130

Otherwise Unclassified Properties

Base Metal Price, % relative 95
10
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 8.0
8.1
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 400
1160

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 600 to 2790
270
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 32 to 57
33
Strength to Weight: Bending, points 26 to 38
38
Thermal Diffusivity, mm2/s 3.3
62
Thermal Shock Resistance, points 26 to 45
15

Alloy Composition

Aluminum (Al), % 0
94.4 to 97.4
Boron (B), % 0 to 0.1
0
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 19 to 21
0 to 0.1
Cobalt (Co), % 39 to 41
0
Copper (Cu), % 0
2.2 to 3.0
Iron (Fe), % 10 to 20.5
0 to 0.5
Magnesium (Mg), % 0
0.3 to 0.6
Manganese (Mn), % 1.5 to 2.5
0.1 to 0.4
Molybdenum (Mo), % 6.0 to 8.0
0
Nickel (Ni), % 14 to 16
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.2
0 to 0.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15