MakeItFrom.com
Menu (ESC)

R30021 Cobalt vs. 2219 Aluminum

R30021 cobalt belongs to the cobalt alloys classification, while 2219 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30021 cobalt and the bottom bar is 2219 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
72
Elongation at Break, % 9.0
2.2 to 20
Fatigue Strength, MPa 250
90 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 86
27
Tensile Strength: Ultimate (UTS), MPa 700
180 to 480
Tensile Strength: Yield (Proof), MPa 500
88 to 390

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1190
540
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 15
110 to 170
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
28 to 44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
81 to 130

Otherwise Unclassified Properties

Density, g/cm3 8.4
3.1
Embodied Carbon, kg CO2/kg material 8.0
8.2
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 520
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 57
9.6 to 60
Resilience: Unit (Modulus of Resilience), kJ/m3 570
54 to 1060
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 24
44
Strength to Weight: Axial, points 23
16 to 43
Strength to Weight: Bending, points 21
23 to 44
Thermal Diffusivity, mm2/s 3.8
42 to 63
Thermal Shock Resistance, points 21
8.2 to 22

Alloy Composition

Aluminum (Al), % 0
91.5 to 93.8
Carbon (C), % 0.2 to 0.35
0
Chromium (Cr), % 26 to 29
0
Cobalt (Co), % 61.7 to 67.3
0
Copper (Cu), % 0
5.8 to 6.8
Iron (Fe), % 0 to 3.0
0 to 0.3
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 0
0.2 to 0.4
Molybdenum (Mo), % 4.5 to 6.0
0
Nickel (Ni), % 2.0 to 3.0
0
Silicon (Si), % 0 to 1.5
0 to 0.2
Titanium (Ti), % 0
0.020 to 0.1
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15