MakeItFrom.com
Menu (ESC)

R30075 Cobalt vs. A206.0 Aluminum

R30075 cobalt belongs to the cobalt alloys classification, while A206.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30075 cobalt and the bottom bar is A206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210 to 250
70
Elongation at Break, % 12
4.2 to 10
Fatigue Strength, MPa 250 to 840
90 to 180
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 82 to 98
26
Tensile Strength: Ultimate (UTS), MPa 780 to 1280
390 to 440
Tensile Strength: Yield (Proof), MPa 480 to 840
250 to 380

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Melting Completion (Liquidus), °C 1360
670
Melting Onset (Solidus), °C 1290
550
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 13
130
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
90

Otherwise Unclassified Properties

Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 8.1
8.0
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 530
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 140
16 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1410
440 to 1000
Stiffness to Weight: Axial, points 14 to 17
13
Stiffness to Weight: Bending, points 24 to 25
46
Strength to Weight: Axial, points 26 to 42
36 to 41
Strength to Weight: Bending, points 22 to 31
39 to 43
Thermal Diffusivity, mm2/s 3.5
48
Thermal Shock Resistance, points 21 to 29
17 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.1
93.9 to 95.7
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.35
0
Chromium (Cr), % 27 to 30
0
Cobalt (Co), % 58.7 to 68
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 0 to 0.75
0 to 0.1
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 0 to 0.5
0 to 0.050
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.1
0.15 to 0.3
Tungsten (W), % 0 to 0.2
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15