MakeItFrom.com
Menu (ESC)

R30075 Cobalt vs. C64800 Bronze

R30075 cobalt belongs to the cobalt alloys classification, while C64800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is R30075 cobalt and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210 to 250
120
Elongation at Break, % 12
8.0
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 82 to 98
44
Tensile Strength: Ultimate (UTS), MPa 780 to 1280
640
Tensile Strength: Yield (Proof), MPa 480 to 840
630

Thermal Properties

Latent Heat of Fusion, J/g 320
220
Melting Completion (Liquidus), °C 1360
1090
Melting Onset (Solidus), °C 1290
1030
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 13
260
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
65
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
66

Otherwise Unclassified Properties

Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 110
43
Embodied Water, L/kg 530
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 84 to 140
51
Resilience: Unit (Modulus of Resilience), kJ/m3 560 to 1410
1680
Stiffness to Weight: Axial, points 14 to 17
7.4
Stiffness to Weight: Bending, points 24 to 25
18
Strength to Weight: Axial, points 26 to 42
20
Strength to Weight: Bending, points 22 to 31
19
Thermal Diffusivity, mm2/s 3.5
75
Thermal Shock Resistance, points 21 to 29
23

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Boron (B), % 0 to 0.010
0
Carbon (C), % 0 to 0.35
0
Chromium (Cr), % 27 to 30
0 to 0.090
Cobalt (Co), % 58.7 to 68
1.0 to 3.0
Copper (Cu), % 0
92.4 to 98.8
Iron (Fe), % 0 to 0.75
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.020
0 to 0.5
Silicon (Si), % 0 to 1.0
0.2 to 1.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.5
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0 to 0.2
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5