MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. 1100A Aluminum

R30155 cobalt belongs to the iron alloys classification, while 1100A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is 1100A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 34
4.5 to 34
Fatigue Strength, MPa 310
35 to 74
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 570
59 to 99
Tensile Strength: Ultimate (UTS), MPa 850
89 to 170
Tensile Strength: Yield (Proof), MPa 390
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1420
640
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 12
230
Thermal Expansion, µm/m-K 14
23

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.7
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 300
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 370
5.9 to 150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 28
9.1 to 17
Strength to Weight: Bending, points 24
16 to 25
Thermal Diffusivity, mm2/s 3.2
93
Thermal Shock Resistance, points 21
4.0 to 7.6

Alloy Composition

Aluminum (Al), % 0
99 to 100
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
0.050 to 0.2
Iron (Fe), % 24.3 to 36.2
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 1.0 to 2.0
0 to 0.050
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15