MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. 2014 Aluminum

R30155 cobalt belongs to the iron alloys classification, while 2014 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 34
1.5 to 16
Fatigue Strength, MPa 310
90 to 160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 570
130 to 290
Tensile Strength: Ultimate (UTS), MPa 850
190 to 500
Tensile Strength: Yield (Proof), MPa 390
100 to 440

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1470
630
Melting Onset (Solidus), °C 1420
510
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 14
23

Otherwise Unclassified Properties

Base Metal Price, % relative 80
11
Density, g/cm3 8.5
3.0
Embodied Carbon, kg CO2/kg material 9.7
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 300
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
6.6 to 56
Resilience: Unit (Modulus of Resilience), kJ/m3 370
76 to 1330
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 28
18 to 46
Strength to Weight: Bending, points 24
25 to 46
Thermal Diffusivity, mm2/s 3.2
58
Thermal Shock Resistance, points 21
8.4 to 22

Alloy Composition

Aluminum (Al), % 0
90.4 to 95
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0 to 0.1
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
3.9 to 5.0
Iron (Fe), % 24.3 to 36.2
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 1.0 to 2.0
0.4 to 1.2
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.5 to 1.2
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15