MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. 333.0 Aluminum

R30155 cobalt belongs to the iron alloys classification, while 333.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is 333.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
90 to 110
Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 34
1.0 to 2.0
Fatigue Strength, MPa 310
83 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
28
Shear Strength, MPa 570
190 to 230
Tensile Strength: Ultimate (UTS), MPa 850
230 to 280
Tensile Strength: Yield (Proof), MPa 390
130 to 210

Thermal Properties

Latent Heat of Fusion, J/g 300
520
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1470
590
Melting Onset (Solidus), °C 1420
530
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 12
100 to 140
Thermal Expansion, µm/m-K 14
21

Otherwise Unclassified Properties

Base Metal Price, % relative 80
10
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.7
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 300
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
2.1 to 4.6
Resilience: Unit (Modulus of Resilience), kJ/m3 370
120 to 290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 28
22 to 27
Strength to Weight: Bending, points 24
29 to 34
Thermal Diffusivity, mm2/s 3.2
42 to 57
Thermal Shock Resistance, points 21
11 to 13

Alloy Composition

Aluminum (Al), % 0
81.8 to 89
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 24.3 to 36.2
0 to 1.0
Magnesium (Mg), % 0
0.050 to 0.5
Manganese (Mn), % 1.0 to 2.0
0 to 0.5
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0 to 0.5
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
8.0 to 10
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5