MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. 5088 Aluminum

R30155 cobalt belongs to the iron alloys classification, while 5088 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is 5088 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 34
29
Fatigue Strength, MPa 310
180
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
25
Shear Strength, MPa 570
200
Tensile Strength: Ultimate (UTS), MPa 850
310
Tensile Strength: Yield (Proof), MPa 390
150

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1420
540
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 14
24

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.7
9.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 300
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
76
Resilience: Unit (Modulus of Resilience), kJ/m3 370
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 28
32
Strength to Weight: Bending, points 24
38
Thermal Diffusivity, mm2/s 3.2
51
Thermal Shock Resistance, points 21
14

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.8
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0 to 0.15
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 24.3 to 36.2
0.1 to 0.35
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 1.0 to 2.0
0.2 to 0.5
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0.2 to 0.4
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15