MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. 6110A Aluminum

R30155 cobalt belongs to the iron alloys classification, while 6110A aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is 6110A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
11 to 18
Fatigue Strength, MPa 310
140 to 210
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 570
220 to 280
Tensile Strength: Ultimate (UTS), MPa 850
360 to 470
Tensile Strength: Yield (Proof), MPa 390
250 to 430

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1470
650
Melting Onset (Solidus), °C 1420
600
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 14
23

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 9.7
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 300
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
47 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 370
450 to 1300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 28
36 to 47
Strength to Weight: Bending, points 24
41 to 48
Thermal Diffusivity, mm2/s 3.2
65
Thermal Shock Resistance, points 21
16 to 21

Alloy Composition

Aluminum (Al), % 0
94.8 to 98
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0.050 to 0.25
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 24.3 to 36.2
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 1.0 to 2.0
0.3 to 0.9
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.7 to 1.1
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15