MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. 7475 Aluminum

R30155 cobalt belongs to the iron alloys classification, while 7475 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is 7475 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
10 to 12
Fatigue Strength, MPa 310
190 to 210
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 81
26
Shear Strength, MPa 570
320 to 350
Tensile Strength: Ultimate (UTS), MPa 850
530 to 590
Tensile Strength: Yield (Proof), MPa 390
440 to 520

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1420
480
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 12
140 to 160
Thermal Expansion, µm/m-K 14
23

Otherwise Unclassified Properties

Base Metal Price, % relative 80
10
Density, g/cm3 8.5
3.0
Embodied Carbon, kg CO2/kg material 9.7
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 300
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
53 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 370
1390 to 1920
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 28
49 to 55
Strength to Weight: Bending, points 24
48 to 52
Thermal Diffusivity, mm2/s 3.2
53 to 63
Thermal Shock Resistance, points 21
23 to 26

Alloy Composition

Aluminum (Al), % 0
88.6 to 91.6
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0.18 to 0.25
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
1.2 to 1.9
Iron (Fe), % 24.3 to 36.2
0 to 0.12
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 1.0 to 2.0
0 to 0.060
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Titanium (Ti), % 0
0 to 0.060
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
5.1 to 6.2
Residuals, % 0
0 to 0.15