MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. 8090 Aluminum

R30155 cobalt belongs to the iron alloys classification, while 8090 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
67
Elongation at Break, % 34
3.5 to 13
Fatigue Strength, MPa 310
91 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 81
25
Tensile Strength: Ultimate (UTS), MPa 850
340 to 490
Tensile Strength: Yield (Proof), MPa 390
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1470
660
Melting Onset (Solidus), °C 1420
600
Specific Heat Capacity, J/kg-K 450
960
Thermal Conductivity, W/m-K 12
95 to 160
Thermal Expansion, µm/m-K 14
24

Otherwise Unclassified Properties

Base Metal Price, % relative 80
18
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 9.7
8.6
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 300
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 370
340 to 1330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 28
34 to 49
Strength to Weight: Bending, points 24
39 to 50
Thermal Diffusivity, mm2/s 3.2
36 to 60
Thermal Shock Resistance, points 21
15 to 22

Alloy Composition

Aluminum (Al), % 0
93 to 98.4
Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0 to 0.1
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
1.0 to 1.6
Iron (Fe), % 24.3 to 36.2
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0
0.6 to 1.3
Manganese (Mn), % 1.0 to 2.0
0 to 0.1
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0
0 to 0.15