MakeItFrom.com
Menu (ESC)

R30155 Cobalt vs. C19400 Copper

R30155 cobalt belongs to the iron alloys classification, while C19400 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is R30155 cobalt and the bottom bar is C19400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 34
2.3 to 37
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 81
44
Shear Strength, MPa 570
210 to 300
Tensile Strength: Ultimate (UTS), MPa 850
310 to 630
Tensile Strength: Yield (Proof), MPa 390
98 to 520

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1470
1090
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 12
260
Thermal Expansion, µm/m-K 14
17

Otherwise Unclassified Properties

Base Metal Price, % relative 80
30
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 9.7
2.6
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 300
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
5.5 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 370
41 to 1140
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 28
9.7 to 20
Strength to Weight: Bending, points 24
11 to 18
Thermal Diffusivity, mm2/s 3.2
75
Thermal Shock Resistance, points 21
11 to 22

Alloy Composition

Carbon (C), % 0.080 to 0.16
0
Chromium (Cr), % 20 to 22.5
0
Cobalt (Co), % 18.5 to 21
0
Copper (Cu), % 0
96.8 to 97.8
Iron (Fe), % 24.3 to 36.2
2.1 to 2.6
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 0.75 to 1.3
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.040
0.015 to 0.15
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 0.75 to 1.3
0
Tungsten (W), % 2.0 to 3.0
0
Zinc (Zn), % 0
0.050 to 0.2
Residuals, % 0
0 to 0.2