MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. 2030 Aluminum

R30556 alloy belongs to the iron alloys classification, while 2030 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30556 alloy and the bottom bar is 2030 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 45
5.6 to 8.0
Fatigue Strength, MPa 320
91 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 550
220 to 250
Tensile Strength: Ultimate (UTS), MPa 780
370 to 420
Tensile Strength: Yield (Proof), MPa 350
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1330
510
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
99

Otherwise Unclassified Properties

Base Metal Price, % relative 70
10
Density, g/cm3 8.4
3.1
Embodied Carbon, kg CO2/kg material 8.7
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 300
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 290
390 to 530
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
45
Strength to Weight: Axial, points 26
33 to 38
Strength to Weight: Bending, points 22
37 to 40
Thermal Diffusivity, mm2/s 2.9
50
Thermal Shock Resistance, points 18
16 to 19

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
88.9 to 95.2
Bismuth (Bi), % 0
0 to 0.2
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 21 to 23
0 to 0.1
Cobalt (Co), % 16 to 21
0
Copper (Cu), % 0
3.3 to 4.5
Iron (Fe), % 20.4 to 38.2
0 to 0.7
Lanthanum (La), % 0.0050 to 0.1
0
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0
0.5 to 1.3
Manganese (Mn), % 0.5 to 2.0
0.2 to 1.0
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.2 to 0.8
0 to 0.8
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.3 to 1.3
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0 to 0.5
Residuals, % 0
0 to 0.3