MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. 308.0 Aluminum

R30556 alloy belongs to the iron alloys classification, while 308.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30556 alloy and the bottom bar is 308.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 45
2.0
Fatigue Strength, MPa 320
89
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 550
150
Tensile Strength: Ultimate (UTS), MPa 780
190
Tensile Strength: Yield (Proof), MPa 350
110

Thermal Properties

Latent Heat of Fusion, J/g 300
470
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
620
Melting Onset (Solidus), °C 1330
540
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 11
140
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 70
10
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 8.7
7.7
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 300
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
3.3
Resilience: Unit (Modulus of Resilience), kJ/m3 290
83
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 26
18
Strength to Weight: Bending, points 22
25
Thermal Diffusivity, mm2/s 2.9
55
Thermal Shock Resistance, points 18
9.2

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
85.7 to 91
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 21 to 23
0
Cobalt (Co), % 16 to 21
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 20.4 to 38.2
0 to 1.0
Lanthanum (La), % 0.0050 to 0.1
0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.5 to 2.0
0 to 0.5
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.2 to 0.8
5.0 to 6.0
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.3 to 1.3
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0 to 1.0
Residuals, % 0
0 to 0.5