MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. 336.0 Aluminum

R30556 alloy belongs to the iron alloys classification, while 336.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30556 alloy and the bottom bar is 336.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
75
Elongation at Break, % 45
0.5
Fatigue Strength, MPa 320
80 to 93
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
28
Shear Strength, MPa 550
190 to 250
Tensile Strength: Ultimate (UTS), MPa 780
250 to 320
Tensile Strength: Yield (Proof), MPa 350
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 300
570
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1420
570
Melting Onset (Solidus), °C 1330
540
Specific Heat Capacity, J/kg-K 450
890
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 15
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
95

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 8.7
7.9
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 300
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
1.1 to 1.6
Resilience: Unit (Modulus of Resilience), kJ/m3 290
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 26
25 to 32
Strength to Weight: Bending, points 22
32 to 38
Thermal Diffusivity, mm2/s 2.9
48
Thermal Shock Resistance, points 18
12 to 16

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
79.1 to 85.8
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 21 to 23
0
Cobalt (Co), % 16 to 21
0
Copper (Cu), % 0
0.5 to 1.5
Iron (Fe), % 20.4 to 38.2
0 to 1.2
Lanthanum (La), % 0.0050 to 0.1
0
Magnesium (Mg), % 0
0.7 to 1.3
Manganese (Mn), % 0.5 to 2.0
0 to 0.35
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
2.0 to 3.0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.2 to 0.8
11 to 13
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.3 to 1.3
0
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0 to 0.35