MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. 358.0 Aluminum

R30556 alloy belongs to the iron alloys classification, while 358.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30556 alloy and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
3.5 to 6.0
Fatigue Strength, MPa 320
100 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 550
300 to 320
Tensile Strength: Ultimate (UTS), MPa 780
350 to 370
Tensile Strength: Yield (Proof), MPa 350
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 300
520
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
600
Melting Onset (Solidus), °C 1330
560
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
36
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
130

Otherwise Unclassified Properties

Base Metal Price, % relative 70
19
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 8.7
8.7
Embodied Energy, MJ/kg 130
160
Embodied Water, L/kg 300
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 290
590 to 710
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 26
37 to 39
Strength to Weight: Bending, points 22
42 to 44
Thermal Diffusivity, mm2/s 2.9
63
Thermal Shock Resistance, points 18
16 to 17

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 21 to 23
0 to 0.2
Cobalt (Co), % 16 to 21
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 20.4 to 38.2
0 to 0.3
Lanthanum (La), % 0.0050 to 0.1
0
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0.5 to 2.0
0 to 0.2
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.2 to 0.8
7.6 to 8.6
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.3 to 1.3
0
Titanium (Ti), % 0
0.1 to 0.2
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.15