MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. 364.0 Aluminum

R30556 alloy belongs to the iron alloys classification, while 364.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30556 alloy and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 45
7.5
Fatigue Strength, MPa 320
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 550
200
Tensile Strength: Ultimate (UTS), MPa 780
300
Tensile Strength: Yield (Proof), MPa 350
160

Thermal Properties

Latent Heat of Fusion, J/g 300
520
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1420
600
Melting Onset (Solidus), °C 1330
560
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 11
120
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
100

Otherwise Unclassified Properties

Base Metal Price, % relative 70
11
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 8.7
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 300
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
19
Resilience: Unit (Modulus of Resilience), kJ/m3 290
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 26
31
Strength to Weight: Bending, points 22
38
Thermal Diffusivity, mm2/s 2.9
51
Thermal Shock Resistance, points 18
14

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 21 to 23
0.25 to 0.5
Cobalt (Co), % 16 to 21
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 20.4 to 38.2
0 to 1.5
Lanthanum (La), % 0.0050 to 0.1
0
Magnesium (Mg), % 0
0.2 to 0.4
Manganese (Mn), % 0.5 to 2.0
0 to 0.1
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0 to 0.15
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.2 to 0.8
7.5 to 9.5
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.3 to 1.3
0
Tin (Sn), % 0
0 to 0.15
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0 to 0.15
Residuals, % 0
0 to 0.15