MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. 5754 Aluminum

R30556 alloy belongs to the iron alloys classification, while 5754 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30556 alloy and the bottom bar is 5754 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 45
2.0 to 19
Fatigue Strength, MPa 320
66 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 550
120 to 190
Tensile Strength: Ultimate (UTS), MPa 780
200 to 330
Tensile Strength: Yield (Proof), MPa 350
80 to 280

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1330
600
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 11
130
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 8.7
8.7
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 300
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
6.1 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 290
47 to 580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 26
21 to 34
Strength to Weight: Bending, points 22
28 to 39
Thermal Diffusivity, mm2/s 2.9
54
Thermal Shock Resistance, points 18
8.9 to 14

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
94.2 to 97.4
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 21 to 23
0 to 0.3
Cobalt (Co), % 16 to 21
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 20.4 to 38.2
0 to 0.4
Lanthanum (La), % 0.0050 to 0.1
0
Magnesium (Mg), % 0
2.6 to 3.6
Manganese (Mn), % 0.5 to 2.0
0 to 0.5
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.2 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Tantalum (Ta), % 0.3 to 1.3
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.15