MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. ACI-ASTM CF3MN Steel

Both R30556 alloy and ACI-ASTM CF3MN steel are iron alloys. They have 64% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is ACI-ASTM CF3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 45
39
Fatigue Strength, MPa 320
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
78
Tensile Strength: Ultimate (UTS), MPa 780
580
Tensile Strength: Yield (Proof), MPa 350
290

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 1100
1010
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1330
1390
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 11
15
Thermal Expansion, µm/m-K 15
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 70
19
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 8.7
3.9
Embodied Energy, MJ/kg 130
53
Embodied Water, L/kg 300
160

Common Calculations

PREN (Pitting Resistance) 40
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
190
Resilience: Unit (Modulus of Resilience), kJ/m3 290
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 26
20
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 2.9
4.1
Thermal Shock Resistance, points 18
13

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0 to 0.030
Chromium (Cr), % 21 to 23
17 to 22
Cobalt (Co), % 16 to 21
0
Iron (Fe), % 20.4 to 38.2
58.7 to 71.9
Lanthanum (La), % 0.0050 to 0.1
0
Manganese (Mn), % 0.5 to 2.0
0 to 1.5
Molybdenum (Mo), % 2.5 to 4.0
2.0 to 3.0
Nickel (Ni), % 19 to 22.5
9.0 to 13
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0.1 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0.2 to 0.8
0 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.040
Tantalum (Ta), % 0.3 to 1.3
0
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0