MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. EN 1.0214 Steel

Both R30556 alloy and EN 1.0214 steel are iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is EN 1.0214 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
12 to 31
Fatigue Strength, MPa 320
160 to 250
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 550
250 to 290
Tensile Strength: Ultimate (UTS), MPa 780
330 to 460
Tensile Strength: Yield (Proof), MPa 350
210 to 360

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1470
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 11
53
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 70
1.8
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 8.7
1.4
Embodied Energy, MJ/kg 130
18
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
34 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 290
120 to 340
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 26
12 to 16
Strength to Weight: Bending, points 22
14 to 17
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 18
11 to 14

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0.020 to 0.060
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0.080 to 0.12
Chromium (Cr), % 21 to 23
0
Cobalt (Co), % 16 to 21
0
Iron (Fe), % 20.4 to 38.2
99.17 to 99.6
Lanthanum (La), % 0.0050 to 0.1
0
Manganese (Mn), % 0.5 to 2.0
0.3 to 0.5
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0 to 0.1
Sulfur (S), % 0 to 0.015
0 to 0.025
Tantalum (Ta), % 0.3 to 1.3
0
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0