MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. EN 1.5503 Steel

Both R30556 alloy and EN 1.5503 steel are iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is EN 1.5503 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
12 to 17
Fatigue Strength, MPa 320
180 to 280
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 550
270 to 320
Tensile Strength: Ultimate (UTS), MPa 780
400 to 520
Tensile Strength: Yield (Proof), MPa 350
270 to 430

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 11
52
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 70
1.8
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 8.7
1.4
Embodied Energy, MJ/kg 130
18
Embodied Water, L/kg 300
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
41 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 290
200 to 490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 26
14 to 19
Strength to Weight: Bending, points 22
15 to 18
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 18
12 to 15

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0
Boron (B), % 0 to 0.020
0.00080 to 0.0050
Carbon (C), % 0.050 to 0.15
0.16 to 0.2
Chromium (Cr), % 21 to 23
0
Cobalt (Co), % 16 to 21
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 20.4 to 38.2
98.4 to 99.239
Lanthanum (La), % 0.0050 to 0.1
0
Manganese (Mn), % 0.5 to 2.0
0.6 to 0.8
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0 to 0.3
Sulfur (S), % 0 to 0.015
0 to 0.025
Tantalum (Ta), % 0.3 to 1.3
0
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0