MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. EN 1.5680 Steel

Both R30556 alloy and EN 1.5680 steel are iron alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is EN 1.5680 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
23
Fatigue Strength, MPa 320
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 550
390
Tensile Strength: Ultimate (UTS), MPa 780
620
Tensile Strength: Yield (Proof), MPa 350
440

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
420
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 11
48
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 70
5.0
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 8.7
1.9
Embodied Energy, MJ/kg 130
26
Embodied Water, L/kg 300
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
130
Resilience: Unit (Modulus of Resilience), kJ/m3 290
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 26
22
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 2.9
13
Thermal Shock Resistance, points 18
18

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0 to 0.15
Chromium (Cr), % 21 to 23
0
Cobalt (Co), % 16 to 21
0
Iron (Fe), % 20.4 to 38.2
93.4 to 95
Lanthanum (La), % 0.0050 to 0.1
0
Manganese (Mn), % 0.5 to 2.0
0.3 to 0.8
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
4.8 to 5.3
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0.2 to 0.8
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.0050
Tantalum (Ta), % 0.3 to 1.3
0
Tungsten (W), % 2.0 to 3.5
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0.0010 to 0.1
0