MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. EN 1.8507 Steel

Both R30556 alloy and EN 1.8507 steel are iron alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is EN 1.8507 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 45
16
Fatigue Strength, MPa 320
440
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
72
Shear Strength, MPa 550
550
Tensile Strength: Ultimate (UTS), MPa 780
900
Tensile Strength: Yield (Proof), MPa 350
670

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
430
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1330
1410
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 11
41
Thermal Expansion, µm/m-K 15
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 70
2.5
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 8.7
1.6
Embodied Energy, MJ/kg 130
21
Embodied Water, L/kg 300
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
130
Resilience: Unit (Modulus of Resilience), kJ/m3 290
1210
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 26
32
Strength to Weight: Bending, points 22
27
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 18
26

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0.8 to 1.2
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0.3 to 0.37
Chromium (Cr), % 21 to 23
1.0 to 1.3
Cobalt (Co), % 16 to 21
0
Iron (Fe), % 20.4 to 38.2
96.1 to 97.7
Lanthanum (La), % 0.0050 to 0.1
0
Manganese (Mn), % 0.5 to 2.0
0.4 to 0.7
Molybdenum (Mo), % 2.5 to 4.0
0.15 to 0.25
Nickel (Ni), % 19 to 22.5
0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.035
Tantalum (Ta), % 0.3 to 1.3
0
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
0