MakeItFrom.com
Menu (ESC)

R30556 Alloy vs. CC490K Brass

R30556 alloy belongs to the iron alloys classification, while CC490K brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is R30556 alloy and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 780
230
Tensile Strength: Yield (Proof), MPa 350
110

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1420
980
Melting Onset (Solidus), °C 1330
910
Specific Heat Capacity, J/kg-K 450
370
Thermal Conductivity, W/m-K 11
72
Thermal Expansion, µm/m-K 15
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
16

Otherwise Unclassified Properties

Base Metal Price, % relative 70
30
Density, g/cm3 8.4
8.8
Embodied Carbon, kg CO2/kg material 8.7
2.9
Embodied Energy, MJ/kg 130
47
Embodied Water, L/kg 300
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
28
Resilience: Unit (Modulus of Resilience), kJ/m3 290
54
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 26
7.3
Strength to Weight: Bending, points 22
9.5
Thermal Diffusivity, mm2/s 2.9
22
Thermal Shock Resistance, points 18
8.2

Alloy Composition

Aluminum (Al), % 0.1 to 0.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Boron (B), % 0 to 0.020
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 21 to 23
0
Cobalt (Co), % 16 to 21
0
Copper (Cu), % 0
81 to 86
Iron (Fe), % 20.4 to 38.2
0 to 0.5
Lanthanum (La), % 0.0050 to 0.1
0
Lead (Pb), % 0
3.0 to 6.0
Manganese (Mn), % 0.5 to 2.0
0
Molybdenum (Mo), % 2.5 to 4.0
0
Nickel (Ni), % 19 to 22.5
0 to 2.0
Niobium (Nb), % 0 to 0.3
0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0.2 to 0.8
0 to 0.010
Sulfur (S), % 0 to 0.015
0 to 0.1
Tantalum (Ta), % 0.3 to 1.3
0
Tin (Sn), % 0
2.0 to 3.5
Tungsten (W), % 2.0 to 3.5
0
Zinc (Zn), % 0.0010 to 0.1
7.0 to 9.5