R30556 Alloy vs. SAE-AISI 1080 Steel
Both R30556 alloy and SAE-AISI 1080 steel are iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is R30556 alloy and the bottom bar is SAE-AISI 1080 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 210 | |
190 |
Elongation at Break, % | 45 | |
11 |
Fatigue Strength, MPa | 320 | |
300 to 360 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 81 | |
72 |
Shear Strength, MPa | 550 | |
460 to 520 |
Tensile Strength: Ultimate (UTS), MPa | 780 | |
770 to 870 |
Tensile Strength: Yield (Proof), MPa | 350 | |
480 to 590 |
Thermal Properties
Latent Heat of Fusion, J/g | 300 | |
250 |
Maximum Temperature: Mechanical, °C | 1100 | |
400 |
Melting Completion (Liquidus), °C | 1420 | |
1450 |
Melting Onset (Solidus), °C | 1330 | |
1410 |
Specific Heat Capacity, J/kg-K | 450 | |
470 |
Thermal Conductivity, W/m-K | 11 | |
51 |
Thermal Expansion, µm/m-K | 15 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 1.8 | |
9.6 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 1.9 | |
11 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 70 | |
1.8 |
Density, g/cm3 | 8.4 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 8.7 | |
1.4 |
Embodied Energy, MJ/kg | 130 | |
19 |
Embodied Water, L/kg | 300 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 290 | |
80 to 84 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 290 | |
610 to 920 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 23 | |
24 |
Strength to Weight: Axial, points | 26 | |
27 to 31 |
Strength to Weight: Bending, points | 22 | |
24 to 26 |
Thermal Diffusivity, mm2/s | 2.9 | |
14 |
Thermal Shock Resistance, points | 18 | |
25 to 29 |
Alloy Composition
Aluminum (Al), % | 0.1 to 0.5 | |
0 |
Boron (B), % | 0 to 0.020 | |
0 |
Carbon (C), % | 0.050 to 0.15 | |
0.75 to 0.88 |
Chromium (Cr), % | 21 to 23 | |
0 |
Cobalt (Co), % | 16 to 21 | |
0 |
Iron (Fe), % | 20.4 to 38.2 | |
98.1 to 98.7 |
Lanthanum (La), % | 0.0050 to 0.1 | |
0 |
Manganese (Mn), % | 0.5 to 2.0 | |
0.6 to 0.9 |
Molybdenum (Mo), % | 2.5 to 4.0 | |
0 |
Nickel (Ni), % | 19 to 22.5 | |
0 |
Niobium (Nb), % | 0 to 0.3 | |
0 |
Nitrogen (N), % | 0.1 to 0.3 | |
0 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.040 |
Silicon (Si), % | 0.2 to 0.8 | |
0 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.050 |
Tantalum (Ta), % | 0.3 to 1.3 | |
0 |
Tungsten (W), % | 2.0 to 3.5 | |
0 |
Zinc (Zn), % | 0.0010 to 0.1 | |
0 |