MakeItFrom.com
Menu (ESC)

R30816 Cobalt vs. 6005A Aluminum

R30816 cobalt belongs to the cobalt alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R30816 cobalt and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 23
8.6 to 17
Fatigue Strength, MPa 250
55 to 110
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 81
26
Tensile Strength: Ultimate (UTS), MPa 1020
190 to 300
Tensile Strength: Yield (Proof), MPa 460
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Melting Completion (Liquidus), °C 1540
650
Melting Onset (Solidus), °C 1460
600
Specific Heat Capacity, J/kg-K 420
900
Thermal Conductivity, W/m-K 13
180 to 190
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Density, g/cm3 9.1
2.7
Embodied Carbon, kg CO2/kg material 20
8.3
Embodied Energy, MJ/kg 320
150
Embodied Water, L/kg 440
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 510
76 to 530
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
50
Strength to Weight: Axial, points 31
20 to 30
Strength to Weight: Bending, points 25
27 to 36
Thermal Diffusivity, mm2/s 3.3
72 to 79
Thermal Shock Resistance, points 28
8.6 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0.32 to 0.42
0
Chromium (Cr), % 19 to 21
0 to 0.3
Cobalt (Co), % 40 to 49.8
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 0 to 5.0
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 1.0 to 2.0
0 to 0.5
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 3.5 to 4.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 3.5 to 4.5
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15