MakeItFrom.com
Menu (ESC)

R30816 Cobalt vs. CR024A Copper

R30816 cobalt belongs to the cobalt alloys classification, while CR024A copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is R30816 cobalt and the bottom bar is CR024A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
15
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 81
43
Tensile Strength: Ultimate (UTS), MPa 1020
230
Tensile Strength: Yield (Proof), MPa 460
140

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Melting Completion (Liquidus), °C 1540
1090
Melting Onset (Solidus), °C 1460
1040
Specific Heat Capacity, J/kg-K 420
390
Thermal Conductivity, W/m-K 13
370
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Density, g/cm3 9.1
9.0
Embodied Carbon, kg CO2/kg material 20
2.6
Embodied Energy, MJ/kg 320
41
Embodied Water, L/kg 440
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
31
Resilience: Unit (Modulus of Resilience), kJ/m3 510
83
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 22
18
Strength to Weight: Axial, points 31
7.1
Strength to Weight: Bending, points 25
9.3
Thermal Diffusivity, mm2/s 3.3
110
Thermal Shock Resistance, points 28
8.1

Alloy Composition

Carbon (C), % 0.32 to 0.42
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 40 to 49.8
0
Copper (Cu), % 0
99.9 to 99.985
Iron (Fe), % 0 to 5.0
0
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 3.5 to 4.5
0
Phosphorus (P), % 0 to 0.040
0.015 to 0.040
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
0 to 0.015
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 3.5 to 4.5
0
Tungsten (W), % 3.5 to 4.5
0