MakeItFrom.com
Menu (ESC)

R30816 Cobalt vs. C10500 Copper

R30816 cobalt belongs to the cobalt alloys classification, while C10500 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is R30816 cobalt and the bottom bar is C10500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
2.8 to 51
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 81
43
Tensile Strength: Ultimate (UTS), MPa 1020
220 to 400
Tensile Strength: Yield (Proof), MPa 460
75 to 400

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Melting Completion (Liquidus), °C 1540
1080
Melting Onset (Solidus), °C 1460
1080
Specific Heat Capacity, J/kg-K 420
390
Thermal Conductivity, W/m-K 13
390
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Density, g/cm3 9.1
9.0
Embodied Carbon, kg CO2/kg material 20
2.6
Embodied Energy, MJ/kg 320
42
Embodied Water, L/kg 440
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
11 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 510
24 to 680
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 22
18
Strength to Weight: Axial, points 31
6.8 to 12
Strength to Weight: Bending, points 25
9.1 to 14
Thermal Diffusivity, mm2/s 3.3
110
Thermal Shock Resistance, points 28
7.8 to 14

Alloy Composition

Carbon (C), % 0.32 to 0.42
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 40 to 49.8
0
Copper (Cu), % 0
99.89 to 99.966
Iron (Fe), % 0 to 5.0
0
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 3.5 to 4.5
0
Oxygen (O), % 0
0 to 0.0010
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
0.034 to 0.060
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 3.5 to 4.5
0
Tungsten (W), % 3.5 to 4.5
0
Residuals, % 0
0 to 0.050