MakeItFrom.com
Menu (ESC)

R30816 Cobalt vs. C14500 Copper

R30816 cobalt belongs to the cobalt alloys classification, while C14500 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is R30816 cobalt and the bottom bar is C14500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 23
12 to 50
Poisson's Ratio 0.3
0.34
Shear Modulus, GPa 81
43
Tensile Strength: Ultimate (UTS), MPa 1020
220 to 330
Tensile Strength: Yield (Proof), MPa 460
69 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Melting Completion (Liquidus), °C 1540
1080
Melting Onset (Solidus), °C 1460
1050
Specific Heat Capacity, J/kg-K 420
390
Thermal Conductivity, W/m-K 13
360
Thermal Expansion, µm/m-K 12
17

Otherwise Unclassified Properties

Density, g/cm3 9.1
8.9
Embodied Carbon, kg CO2/kg material 20
2.6
Embodied Energy, MJ/kg 320
42
Embodied Water, L/kg 440
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
36 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 510
21 to 300
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 22
18
Strength to Weight: Axial, points 31
6.8 to 10
Strength to Weight: Bending, points 25
9.1 to 12
Thermal Diffusivity, mm2/s 3.3
100
Thermal Shock Resistance, points 28
8.0 to 12

Alloy Composition

Carbon (C), % 0.32 to 0.42
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 40 to 49.8
0
Copper (Cu), % 0
99.2 to 99.596
Iron (Fe), % 0 to 5.0
0
Manganese (Mn), % 1.0 to 2.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nickel (Ni), % 19 to 21
0
Niobium (Nb), % 3.5 to 4.5
0
Phosphorus (P), % 0 to 0.040
0.0040 to 0.012
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tantalum (Ta), % 3.5 to 4.5
0
Tellurium (Te), % 0
0.4 to 0.7
Tungsten (W), % 3.5 to 4.5
0