MakeItFrom.com
Menu (ESC)

R31233 Cobalt vs. 6162 Aluminum

R31233 cobalt belongs to the cobalt alloys classification, while 6162 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R31233 cobalt and the bottom bar is 6162 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
68
Elongation at Break, % 17
6.7 to 9.1
Fatigue Strength, MPa 220
100 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 85
26
Tensile Strength: Ultimate (UTS), MPa 1020
290 to 300
Tensile Strength: Yield (Proof), MPa 420
260 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1330
620
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 12
190
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
50
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
170

Otherwise Unclassified Properties

Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 8.4
8.3
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 480
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
19 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 410
510 to 550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 33
29 to 30
Strength to Weight: Bending, points 26
36
Thermal Diffusivity, mm2/s 3.2
79
Thermal Shock Resistance, points 25
13

Alloy Composition

Aluminum (Al), % 0
96.7 to 98.9
Boron (B), % 0 to 0.015
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 23.5 to 27.5
0 to 0.1
Cobalt (Co), % 44.7 to 63.3
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 1.0 to 5.0
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0.1 to 1.5
0 to 0.1
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 7.0 to 11
0
Nitrogen (N), % 0.030 to 0.12
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.050 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15