MakeItFrom.com
Menu (ESC)

R31233 Cobalt vs. A360.0 Aluminum

R31233 cobalt belongs to the cobalt alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R31233 cobalt and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
72
Elongation at Break, % 17
1.6 to 5.0
Fatigue Strength, MPa 220
82 to 150
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 85
27
Tensile Strength: Ultimate (UTS), MPa 1020
180 to 320
Tensile Strength: Yield (Proof), MPa 420
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
530
Melting Completion (Liquidus), °C 1350
680
Melting Onset (Solidus), °C 1330
590
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 12
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
100

Otherwise Unclassified Properties

Density, g/cm3 8.6
2.6
Embodied Carbon, kg CO2/kg material 8.4
7.8
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 480
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 410
190 to 470
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 33
19 to 34
Strength to Weight: Bending, points 26
27 to 39
Thermal Diffusivity, mm2/s 3.2
48
Thermal Shock Resistance, points 25
8.5 to 15

Alloy Composition

Aluminum (Al), % 0
85.8 to 90.6
Boron (B), % 0 to 0.015
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 23.5 to 27.5
0
Cobalt (Co), % 44.7 to 63.3
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 1.0 to 5.0
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0.1 to 1.5
0 to 0.35
Molybdenum (Mo), % 4.0 to 6.0
0
Nickel (Ni), % 7.0 to 11
0 to 0.5
Nitrogen (N), % 0.030 to 0.12
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.050 to 1.0
9.0 to 10
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.15
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25